The Graphical Models Toolkit and Applications to Online Activity Recognition for ISTC

Jeff Bilmes, Richard Rogers, Mike Chuang, Matthew C. Leong, and Dieter Fox
University of Washington, Seattle, WA 98195.

Summary

- Graphical models are a powerful and flexible modeling framework for a wide array of problems (e.g., graphical decision models, hidden Markov models).
- Graphical models allow for efficient computation and reasoning about complex systems.

Using Graphical Models

- A graphical model is a visual, abstract, and mathematically formal description of a family of probability distributions.
- Graphical models are used in various fields, including speech recognition, computer vision, and natural language processing.

Activity Recognition Model

- Activity recognition models are used to identify and classify human activities from sensor data.
- These models can be used in health monitoring, security, and surveillance applications.

Graphical Program Graphs for Debugging/Teaching

- Graphical program graphs provide a visual representation of a program's control flow.
- These graphs can be used to teach debugging techniques and to improve program understanding.

Graphical Models

- A graphical model is a visual, abstract, and mathematically formal description of a family of probability distributions.
- Graphical models are used in various fields, including speech recognition, computer vision, and natural language processing.

Dynamic Graphical Models

- Dynamic graphical models are used to model systems that change over time.
- These models can be used in applications such as financial forecasting and weather prediction.

Large Vocabulary Continuous Speech Recognition

- Large vocabulary continuous speech recognition is a challenging problem in natural language processing.
- These systems use graphical models to handle the variability in speech data.

Sub-Families of Probability Distributions

- The toolkit supports several sub-families of probability distributions, including Gaussian, tree-based, and factorized distributions.
- These sub-families allow for flexible modeling of complex systems.

Sensor Teams for Activity Recognition

- Sensor teams are used to collect data from multiple sensors in a coordinated manner.
- These teams can be used in applications such as surveillance and health monitoring.

Graphical Models Tool Features

- The toolkit provides features such as graphical program graphs, debugging tools, and performance metrics.
- These features aid in the development and analysis of graphical models.

SPA: multi-clients each with sensor over network

- SPA is a system that supports multi-clients with sensor over network.
- This system is designed to be scalable and efficient.

Deterministic Relationships Between Random Variables

- Graphical models can be used to model deterministic relationships between random variables.
- These relationships can be used to reason about the behavior of complex systems.

GMM Toolkit Design Workflow

- The toolkit design workflow involves several steps, including data collection, model selection, and evaluation.
- This workflow enables the development of effective graphical models.

Acknowledgements

- The authors would like to thank the following institutions for their support:
 - Intel Science and Technology Center for Pervasive Computing
 - Washington University in St. Louis
 - UW-Seattle
 - UW-Madison
 - UW-Milwaukee
 - UW-Oregon
 - UW-Stout
 - UW-Whitewater

References